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The source function describing the energy transfer between the components of 
the internal wave spectrum due to nonlinear interactions is derived from the 
Lagrangian of the fluid motion and evaluated numerically for the spectral models 
of Garrett & Munk (1972a, 1975). The characteristic time scales of the transfer 
are found to be typically of the order of some days, so that nonlinear interactions 
will play an important role in the energy balance of the wave field. Thus implica- 
tions of the nonlinear transfer within the spectrum for generation and dissipation 
processes are considered. 

1. Introduction 
Our knowledge of internal wave motions in the interior of the ocean has 

advanoed considerably in recent years as a combined result of improving instru- 
ments and ocean techniques and interpreting the data within the framework of 
linear internal wave theory, The progress in the last four years has been reviewed 
by Briscoe (1976), and Wunsch (1975) gave a critical survey of the observational 
techniquesanddatainterpretation. Garrett & Munk (1972) made the first attempt 
to provide a unified picture of the wave field by reconstructing the complete 
wavenumber spectrum of the motion from the available data. Since then the 
model spectrum of Garrett & Munk (henceforth GM) has been slowly changing, 
partly because the parameters of the model have been measured more precisely, 
partly because the model has been extended at small scales to include the 
observed fine-structure under the hypothesis that this is due to internal waves 
(Garrett & Munk 1975). 

Comparatively little is still known, however, about the dynamical processes 
which govern the internal wave field in the ocean and determine the energy level 
and the spectral shape. There are a large number of experimental and theoretical 
studies treating the generation and dissipation of internal waves (see the review by 
Thorpe 1975). Most of these studies consider the interaction of discrete waves 
with external fields and may not be applied to the balance of a spectrum. But 
even if the spectral input or dissipation rates of interaction processes are derived 
(cf. Miiller & Olbers 1975) the evaluation might still be impossible because the 
space-time structure of the interacting fields is not sufficiently well known. This 
applies especially to the space-time spectra o i  atmospheric fluctuations. Some 

t Contribution from the Sonderforschungsbereich 94 ‘Meeresforsohung Hamburg’. 
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processes, such as wave breaking, for example, even resist altogether a rigorous 
theoretical treatment because a reasonable parametrization of their strongly 
nonlinear dynamics is lacking. 

Nonlinear interactions within the internal wave field can be investigated 
without being restricted by these two principal difficulties: lack of the space-time 
structure or lack of a theoretical concept. A model of the wave spectrum exists, 
and the theory of nonlinear interactions among waves is well known and has been 
applied with success to many geophysical fields, including internal waves. Weak 
resonant interaction among discrete internal waves has been studied by Ball 
(1964) and Thorpe (1966). Hasselmann (1966,1967) has extended the theory to a 
continuous spectrum of resonantly interacting wave components. Kenyon (1968) 
has evaluated the energy transfer rates in an ocean with linear stratification for 
a low mode spectrum which is unfortunately in strong contrast to the GM model. 
Parallel to these theoretical investigations laboratory experiments have been 
carried out to demonstrate resonant interactionsfor progressive (Martin, Simmons 
& Wunsch 1969, 1972) and standing internal waves (McEwan 1971; McEwan, 
Mander & Smith 1972). Neshyba & Sobey (1975) even attempted to trace 
resonant triplets of internal waves in the ocean by means of bispectral analysis of 
temperature records from vertically separated sensors. 

I n  this paper we derive the source function for resonant interaction of internal 
waves in a WKBJ representation starting with a Lagrangian deimiption of a 
rotating Boussinesq fluid to include the effect of the Coriolis forces. The source 
function is evaluated numerically for the GM model and the resulting energy 
transfer within the spectrum and the characteristic time scales are discussed. 
It is found that nonlinear interactions transfer energy from medium frequencies 
and wavenumbers to high wavenumbers at low and high frequencies, with 8 

transfer rate which increases with the square of the local Brunt-Vaisala fre- 
quency. With a characteristic transfer time of some days in the main thermo- 
cline, wave-wave interaction can be expected to play an important role in the 
energy balance of the internal wave field. 

Thus, as in the surface wave problem (Hasselmann et ab. 1973), the nonlinear 
energy transfer within the spectrum may serve as a frame which other processes 
should fill if they contribute significantly to the energy balance. The nonlinear 
transfer rate then implies restrictions on the effectiveness of these processes. This 
is discussed for the generation and dissipation of inertial waves, and dissipation 
of internal waves by wave breaking. 

2. Lagrangian description of a Boussinesq fluid 
Linear wave trains and weak nonlinear interactions among them are suitably 

treated with a Lagrangian description of the fluid motion. If a variational 
principle is available which produces the equations of motion the lengthy and 
cumbersome derivation of the WKBJ approximation of a vector problem to 
first order can be avoided by the method of the averaged Lagrangian (see 
Whitham 1965, 1970; Dewar 1970; Dougherty 1970; Bretherton 1971; Olbers & 
Richter 1973). Treating wave-wave interactions within a Lagrangian framework 
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has the advantage of dealing with a scalar perturbation analysis and, moreover, 
yields symmetrical coupling coefficients (Hasselmann 1966, 1967). 

The Lagrangian equations of motion of a fluid in a rotating co-ordinate system 
are given by? 

Here p and p are the (Eulerian) density and pressure field a t  the instantaneous 
position q(r, t )  of a fluid parcel which in an initial state was at the position rj  with 

(2.2) 
the initial density 

If the fluid is incompressible the volume of each fluid parcel does not change on 

(2.3) 
its path. Thus 

and pL(r )  = p ( x , t ) .  

p{z5 + Eglel f k  + sj3g> = - ap/axj. (2.1) 

PLW = P ( X ,  t )  a(% x2, X 3 ) / W I ,  r2, r3). 

52,  z3) /a(r1 ,  r2,  r3)  = ' 
Equation (2.1) and the constraint (2.3) may be derived from Hamilton's 

principle 

using the Lagrangian density 

dP = ~ ~ L { * j : k j + ~ j j k ~ f j ~ k : k ~ ~ - ~ P L g X 3 + ~ { a ( x l , x 2 , x 3 ) / a ( r l ,  r2, r3)- '} (2*5) 

with the Lagrangian multiplier h(r, t )  = p ( x ,  t ) .  
The Boussinesq approximation is obtained by expanding the fields x5 and h 

about a state of hydrostatic equilibrium D - 0 and neglecting variations in 
5 .-. 

density in so far as they affect inertia but retaining them in the buoyancy terms. 
We d e h e  the deviations from equilibrium by 

l$r, t )  = x j ( r ,  t )  - r j ,  n(r, t )  = h(r, t )  - jT(x3). (2.6) 

djT/dr3 = -gp(r3). (2.7) 

(2.8) 

(2.9) 

(2.10) 

The equilibrium pressure 11 is related to the mean density field i j  by 

The Lagrangian of the Boussinesq approximation then becomes 

dP13 = *pO{gj & + €jjk,fj $k '$} f n { a E j / a r j  + Ajj + A} - @($3) ,  

A = det (i3cj/ark) = Ajk aEj/ar,. 

w - 3 )  = g m . 3 )  -53 + i w . 3  + E 3 L  

where po is a constant average density and Ajk is the cofactor of a&/ark in 

The equilibrium state appears only in the external potential 

which is the potential of the buoyancy field. Expansion yields 

where 

(2.11) 

(2.12) 

is the squared Brunt-Vaisala or buoyancy frequency. 

f We use a right-handed co-ordinate system (TI, r2, r3)  with the r 3  axis pointing upwards. 
The Coriolis vector (fi ,f i ,f3) will be vertical in the later sections (f3 = f). efkZ = I( - 1)  if 
(jM) i s  an even (odd) permutation; ejkZ = 0 otherwise. 
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We notice two nonlinear forces which act on the fluid motion. The first arises 
from the incompressibility constraint; the second is due to non-quadratic terms 
in the buoyancy potential. The ratio of these two forces can be estimated as 

(2.13) 

where k,  is a mean vertical wavenumber of the motion and L, is the vertical scale 
of the Brunt-V&isal& frequency. The ratio of the inertial to the nonlinear forces 

(2.14) 
follows from 

while the terms which have been omitted as a consequence of the Boussinesq 
approximation are related to the remaining inertial terms by 

Po @lap g; = Po/@ M 1 03, (2.15) 

with Sp = p-p,. For internal wave motion representative values are t3 = lorn, 
k3 = 2n/260m and Lu = 1300m (average values taken from Garrett & Munk 
1 9 7 2 ~ ) .  Then 

PO &/nAjj = O(l /k&) 

a3p 
pot$  : rrAjj : t;a“= : M 103 : 2x102 : 10 : I, 

which justifies successively the Boussinesq approximation, which has already 
been applied, a WKBJ approximation in the vertical by which nonlinear 
buoyancy forces are shifted to higher orders, and linearization, i.e. treating the 
nonlinear forces as a weak perturbation of the linear state. 

3. Internal waves in the WKBJ approximation 
The rich vertical structure of internal wave motion can be seen in vertical 

profiles of temperature (Cairns 1975) and current (Sanford 1975). Indirect 
evidence of the small vertical scale of the motion is given by the rapid drop of 
coherences of current and temperature data over increasing vertical separations 
of the sensors (Siedler 1971; Webster 1972). Also, the ‘WKBJ normalization’ of 
the observed spectra works extremely well (Fofonoff & Webster 1971; Briscoe 
1975b; Hayes, Joyce & Millard 1975). 

3.1. Linear internal waves 

If the scales of the background are large compared with the wavelength, i.e. 
k3Lv 9 1, the wave field can be represented as superposition of propagating wave 
trains. An internal wave train is of the form 

where the amplitude a, wave vector k, frequency w, and the relative amplitudes 
Zj and P vary slowly compared with the rapid phase variations, This slow time 
and space dependence can be obtained by a WKBJ analysis or, more elegantly, 
by Whitham’s method of the averaged Lagrangian (Whitham 1965, 1970; 
Dewar 1970; Dougherty 1970; Bretherton 1971). 
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We substitute (3.1) into the ‘linearized’ form of LZB and average over the 

A = Id/ { w ~ Z ~ Z ~ * - N ~ Z ~ Z ~ * - - ~ W ~ ( Z ~ Z T  - Z I Z ~ ) + i k j ( Z j P * - P Z , * ) } .  (3.2) 

Variation of A with respect to the relative amplitudes Zj and P yields a system of 
linear equations which determine 2, and P as 

phases. This yields Whitham’s averaged Lagrangiant 

and P = c ( W 2 - p )  (3.4) 

up to a suitable real normalization constant C, provided that the frequency and 
the wave vector obey the dispersion relation 

Here k, a and /3 are the moduli of the total, horizontal and vertical wave vectors, 
respectively, and the square root is taken positive. From the existence of a 
dispersion relation one obtains the ray equations 

which determine wave group trajectories in r, k space. Finally, modulations of 
the amplitude caused by the propagation follow from the variation of A with 
respect to the phase of the wave group. This yields 

- 0. 
aan a aA 
at aw ar,akj 
-_--- - 

Because A = 0 for the solutions (3.3)-(3.5) we have 

so that (3.7) may be written as 

(3.7) 

which expresses the conservation of wave action if we define the wave action 
density by aA/aw. This quantity is related to the wave energy density E by 

E = waAlaw-A= waAlaw = 2ylaI2, (3.10) 

with (3.11) 

Thus the action density is equal to the energy density of the wave divided by its 
frequency. In  the presence of a mean current a Doppler shift must be added to 
!2(k,r,t). Then the frequency w in (3.10) must be identified with the intrinsic 

t We shall set po equal to 1, thus measuring energy density and pressure in cm2 s - ~ .  



380 D.  J .  Olbers 

frequency, i.e. the frequency relative to the mean flow (Bretherton & Garrett 
1968; Olbers & Richter 1973), if E is to retain its physical meaning as the energy 
density relative to the mean flow. 

3.2. Wave-wave interactions 

I n  the linear theory the waves move independently of each other through the 
background medium. Changes in the wave field occur only because the wave 
parameters - frequency, wave vector and amplitude - are slowly modulated by 
the inhomogeneities of the background. Proceeding to higher orders in the wave 
amplitudes we find that there are additional changes in the state of the wave 
field because the waves exert nonlinear forces on each other and exchange energy 
and momentum by resonant coupling. 

The resonant interaction of waves has been developed in a Lagrangian frame- 
work by Hasselmann (1966, 1967, 1968) and applied to various geophysical wave 
fields. We can follow closely his concept with one exception. A rotating system as 
characterized by the Coriolis term in (2.8) is not invariant under time reversal in 
the sense of classical dynamics (it would be invariant against reversing the 
rotationvector inaddition to thereversal of timeandmomenta). Thereforenormal 
amplitudes as used by Hasselmann do not exist and we have to modify his 
concept slightly . 

Because of the relation (2.13), the lowest order of the WKBJ expansion of the 
Lagrangian (2.8) is given by 

9 0  = sttj l, + €jklf,t-k &- N2C3C3)  + ?7 ("j + Ajj + A], (3.12) 

which contains only the nonlinearities arising from the incompressibility 
constraint G + A ~ ~ + A  ari = 0. (3.13) 

A linear wave group satisfies this constraint only to the first order in the wave 
amplitude. A representation of the wave field which is correct to all orders in the 
wave amplitude can be obtained by expanding the displacement 5 in a series 

a?;. 

5 = ~aoZoexpi (ko . r -wot )  
0 + Z ala2Zlzexp {i(k, + k,). r - i (w ,  + w2) t ]  + . .. (3.14) 

and computing the higher-order coefficients in terms of the lower-order ones by 
means of (3.13). We have simplified the notation by introducing OJ, = sj Qk,) 
with s, = rt and using j for (si, k,). Thus a. stands for Q0, and for each dummy 
index j there is summation over the two sign possibilities w = rt Q(k) as well as 
overall wavevectors k(general1y acontinuum). Ifwe takeinaccordancewith (3.3) 

1.2 

(3.15) 
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where j denotes ( - sj, - kj), reality of is achieved (with C;F = C,) by 

(aj)* = a?. (3.16) 

The second-order expansion coefficient may then be chosen as 

(3.17) 

and i t  can be verified that (3.14) then satisfies (3.13) correct to second order in 
wave amplitude. Higher-order coefficients will not be needed. 

We substitute the expansion (3.14) into the Lagrangian (3.12). After spatial 
(but not temporal) averaging we obtain the Lagrangian for the wave amplitudes 

L = L, +Lint, 
with a quadratic part 

(3.18) 

(3.19) 

and an interaction part of the form 

Lint = X {a,a,a,A,,, + uoa,a,B,,z + d06,a,COl2} exp { - i(w, + w1 + wg)  t}  + . . . , 
O,L2  

(3.20) 

in which AOl2, etc., differ from zero only when k, + k, + k, = 0, since no other 
cubic terms survive the spatial averaging. We are here assuming spatial homo- 
geneity, i.e. that the wave amplitudes aj  are functions of time alone, to sufficient 
accuracy. 

We assume now that because of nonlinear interaction the amplitudes of the 
linear wave field show only a slow variation in time compared with the rapid 
variation of the phase. Then, applying the usual two-timing analysis, the equation 
of motion for the wave amplitude 

(3.21) 

is given to the lowest order in alwa < 1 by 

6, = -3iw,y;l ~ a 1 a ~ D 6 1 2 e x p i ( w , - w , - w , ) t ,  (3.22) 
12 

with an interaction coefficient 

Qj12 = - ~ A ~ l z + g i ( w o - w l - ~ , ) B ~ 1 2 .  (3.23) 

Equation (3.22) may be solved by a perturbation analysis for either small 
amplitudes (a < 1) or small coupling (D < 1). It is found then that pairs of waves 
generate oscillations with the sum and the difference of their wave vectors and 
frequencies. The oszillations remain stationary unless the resonance condition 

w o - w l - w z  = 0 (3.24) 

is met. Then energy is transferred from the generating components (sl, k,) and 
(s,, k,) to a free wave (so, k,). 
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On the resonance surface wo + w1 + w2 = 0 the interaction coefficient takes the 
symmetrical form 

Do12 = - b4012 = a012 + 01102 + a210, (3.25) 

with a012 = AiQo(Gl -f2) (kl * 2 2 )  (k2 * 21). (3.26) 

The symmetrization of A,,, in the three index pairs follows from the structure of 
the interaction Lagrangian (3.20). Because of reality we have 

A..- 012 - - (A012)*; (3.27a) 

and, as already mentioned, homogeneity implies 

A,,, = 0 for ko+k,+k2 4 0. 

A,, = 0 for ko = 0. 
Furthermore, one finds 

The same relations apply of course to DOl2. 

(3.27 b )  

(3.28) 

3.3. The radiation balance equation 
We shall consider only average properties of the internal wave field. To a first 
approximation, the wave field is statistically stationary and homogeneous, so 
that ensemble mean values may be obtained by applying time or spatial averaging 
procedures to the data. The statistical properties of a stationary and homo- 
geneous field of free dispersive linear waves are completely d&ermined by the 
(‘power’) spectrum since such a field rapidly attains a Gaussian state (Hassel- 
mann 1967), asymptotically for any fixed spectral resolution. 

In  practice, the internal wave field in the ocean is locally Gaussian, stationary 
and homogeneous only because nonlinear and external dynamical processes 
weakly affect the state of the field. The spectrum is thus a locally defined quantity 
which vanes slowly in space and time. We define the energy spectrum E(k, r, t )  by 

(%(a$)*) = &JssJ(k- k’) A % Y - ~ E ( ~ ,  r, t ) .  (3.29) 

Here angle brackets denote ensemble means and A3k is the wavenumber incre- 
ment of the sum (3.14). 

Owing to interaction processes the wave action of each individual wave com- 
ponent no longer remains constant but changes slowly along the wave’s path. 
Accounting for these changes by a source function 8, the generalization of (3.9) 
to a statistical wave field is given by the radiation balance or Boltzmann equation 

(3.30) 

where n(k, r, t )  = m, r, t ) / w ( k )  (3.31) 

is the action density spectrum and w is the intrinsic frequency. 
At the lateral or vertical boundaries the wave packets are reflected and undergo 

additional changes if interactions with external fields at the boundary occur. The 
radiation condition at a boundary with a normal vector yi is thus of the form 

y,{fj(k)n(k) +fj(k’)n(k‘)} = F [ n ] ,  (3.32) 
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where S [ n ]  is the net flux of action through the boundary and k and k’ the 
incident and reflected wave vectors of the wave packet (cf. Muller & Olbers 1975). 

Because of the Gaussian property of the lowest-order wave field and its 
statistical independence of external fields, the radiation balance equation is a 
closed equation for the action density spectrum: the source function is again a 
functional of the spectrum. The actual form of the functional can be derived for 
each interaction process separately; superposition yields the complete source 
function 8. Methods and concepts for deriving the source terms of various inter- 
action processes affecting the internal wave field have been surveyed by Muller & 
Olbers (1975). 

The theory of resonant interactions in statistical wave fieIds has been worked 
out by Hasselmann (1966,1967,1968). The equation of motion (3.22) for the wave 
amplitude and the relations (3.27) for the interaction coefficients are almost 
identical to the equations (2.7)-(2.9) of Hasselmann’s (1967) paper. Thus we 
can refer to his derivation of the source function for wave-wave interaction and 
give only the final result, which is 

S,, = j d 3 k , / d 3 k , { T f S ( k  - k, - k,) S(w - o1 - wa) [nln, - nn, - nn2] 

+2T-&(k-kl+k2)6(w-wl+w,) [nln2+nnl-nnJ), (3.33) 

where nj = n( 4) and wj (here > 0) is the intrinsic frequency of the wave component 
ki. The transfer function TP, p = k ,  is found to be 

(3.34) 

Because of (3.15) and (3.26), TP does not depend on thenormalization constant of 
the relative amplitudes (3.15). 

The transfer function TP and the resonance conditions 

W - W , - / A U O ~  = 0, k-kl-pk, = 0 (3.35) 

have axial symmetry with respect to the vertical axis. Therefore the source 
function shows vertical symmetry, or any subclass of axial symmetry with the 
vertical axis, if the spectrum obeys any of these symmetries. This meansespecially 
that such a symmetry class of a spectrum cannot be changed by wave-wave 
interactions. 

The source term S,, very closely resembles Boltzmann’s collision integral for 
interacting particles of momentum k and energy w distributed in r, k space 
according to a number density n. TP is then the differential cross-section for the 
scattering process; the &-functions in the integral express the conservation of 
energy and momentum for each individual collision. Consequently, the total 
wave energy and momentum are conserved: 

(3.36) 

so that resonant interactions among the waves only redistribute energy and 
momentum within the wave field. 
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4. The nonlinear energy transfer within Garrett-Munk spectra 
The source function for resonant interactions in a statistical internal wave 

field has been computed by Kenyon (1968), who used a model spectrum with 
energy in the first two modes in a linearly stratified ocean. Such a model is in 
strong contrast to the recent picture of the deep-sea internal wave field as 
described by Garrett & Munk (1972a, 1975). According to their model the 
internal wave energy extends to quite high mode numbers. The time scales of the 
nonlinear interactions in such a wave field, and of course the detailed features, 
will differ from Kenyon's results, so that a re-examination of the nonlinear energy 
transfer appears to be necessary. 

4.1. T h e  Garrett-Munk model spectrum 
Based on internal wave observations made at different locations and different 
times, the GM model is believed to represent to some degree some average pro- 
perties of the internal wave field in the ocean, such as horizontal isotropy, 
vertical scales of about loom, horizontal scales of the order of some km, and 
a - 2 slope in the frequency domain of the horizontal kinetic energy spectrum. 
Some other features of the model such as the form of the bandwidth and the 
vertical symmetry between upward- and downward-propagating waves (inherent 
in the modal approach) are still questionable. 

The GM model spectrum is horizontally isotropic and vertically symmetric 
and conveniently represented as (a, w, q5, a)-density, where (a, q5) are polar co- 
ordinates of the horizontal wavenumber a and a the sign of the vertical wave- 
number. Transformation of the energy spectrum E(k)  follows from 

Thus 
with the Jacobian 

E'(a, w ,  q5) = J .  E(a, a/3) 

For the GM model we have 

E+@, W ' 9 )  = q a ,  039) = E(a, w ) ,  
which is of the form 

A ( A )  B(o). E(a,o)  = - - - 
2 * 27r; oc* (0) 

E l  I 

a, (0) 

(4.4) 

(4 .5)  

Here E(rJ is the total energy per unit volume of the wave field and a,(w) the 
bandwidth for the horizontal wavenumber. The representation of the spectrum 
involves two distribution functions A(h) and B(o) describing the distribution of 
energy in a, w space. Both are normalized to unity. For A(h),  GM took a simple 
top-hat distribution 

1 1 for 0 < h < I ,  

0 otherwise 
A(h) = 
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FIGURE 1. (a)  Energy distribution function B(w) of the GM model, and its integral 
fromf to W .  ( b )  Energy distribution function A(h) of the GM model. 

in their 1972 model, and 
A(h) = (9 -  1) (1 +h)-,J (4.7) 

in their more sophisticated 1975 model, which adjusts the model spectrum a t  
high vertical wavenumbers to observed fine-structure spectra. The data suggest 
2 < q < 3. For the frequency distribution GM chose 

which is the well-established law away from f, modified by an integrable cusp 
at f to represent the average inertialpeak. Figure 1 (a) shows wB(w) and figure 1 (b )  
shows A ( h )  for the two models and a Gaussian curve which we shall use instead of 
(4.6) for numerical reasons. 

For the bandwidth GM took 

.*(w) = b . j , ( W 2 - - f 2 ) *  (4-9) 

with a scaling factor b = 4.6 x s em-l and an equivalent mode-number 
scale j, which is 20 for GM 72 and 6 for GM 75. Recent estimates of j, for GM 72 
range from 8 to 15 (Siedler 1974; Desaubies 1975; Cairns 1975). 

The energy density was found to be proportional to the buoyancy or Brunt- 
VaisiilL frequency: 

E(r3)  = E 0 N ( r 3 ) / N 0 ?  (4.10) 

which is in accordance with a linear WKBJ model [(3.8) with 3/3t = 01 and with 
observations. According to Garrett & Munk ( 1 9 7 2 ~ )  a representative value of the 
energy level is Eo = 30 em2 s - ~  at No = 5.2 x s-l 

25 F L M  74 
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Besides the inertial frequency f the GM model involves three independent 
parameters: the wavenumber slope q, the mode-number scale j, and the energy- 
level parameter Eo/No. For the computation of the source function we shall take 
q = 2-5 and study only the effect of j, and Eo/No or, equivalently, the maximal 

k * ( y 3 )  = a , ( N )  = b . j*[N2(r3) - f '34 (4.11) 
bandwidth 

and the total energy density E(r3) .  

4.2. Computation of the transfer integral 

As axial and vertical symmetries of the spectrum are transmitted to the source 
function i t  is convenient to rewrite the transfer integral (3.33) in a form in which 
the source function and the spectrum appear as (a, 01, $, 5)-densities. We trans- 
form the densities and the volume elements of the integration and eliminate the 
&functions. This vields 

with 6 = E'/w and !Pp = Tp( J, ld~, /d$~l)- ' .  (4.13) 

The quantities with subscript 2 can be eliminated using the resonance conditions 
(3.35) and the dispersion relation (3.5). These equations in addition determine 
the wavenumber interval (a, min, a1 to which al is restricted and give I$ - $,I 
as a function of a, w, $, 5, al, w1 and CT~. 

Note that the difference interaction (p = - ) contributes to S,, only for 
w < N -f while sum interaction (p = + ) contributes only for w > 2f. Obviously 
X,, E 0 for N < 2f: the resonance conditions cannot be met and triad inter- 
actions are impossible. 

The form (4.12) of the transfer integral is suitable for numerical computation. 
The accuracy of the numerical integration, however, can be improved by two 
minor modifications. 

(i) The transfer function !?p, as defined by (4.13), has integrable singularities 
at a, = almin and a, = almax which originate from Ido,/d$,I-l. These singularities 
can be separated and integrated analytically prior to the numerical integration. 

(ii) Because of the symmetrical structure of the interaction coefficients (3.25) 
and the resulting symmetry of the transfer integral (3.33) it is possible to get 
three independent estimates of the source function even though the terms of the 
integrand are only computed once. One estimate is obtained as the direct result 
of the integration and two more by collecting for each resonance point k, k, and k, 
all increments occurring a t  k, and k,. It turns out that the mean of these three 
estimates is considerably more stable numerically than the individual estimates. 

The transfer integral was evaluated for the GM spectrum. Because of the 
symmetry properties of this spectrum the source function X&,(a, w, g5) does not 
depend on $ and (T. Numerical results have been obtained using a variable-grid 
integration scheme to handle large variations of the integrand. The stability was 
tested by varying the number and the appropriate volume of the grid points. The 
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deviation of the three estimates from their mean as well as the conservation of 
energy (3.36) was used as a measure of numerical accuracy. Conservation of 
momentum cannot be used because it is trivially satisfied for horizontally iso- 
tropic and vertically symmetrical spectra. 

The source function is parameterized by the two frequencies f and N(r3)  and 
the parameters describing the energy spectrum, E(r3) and k,(rJ.  Three of these 
parameters ( N ,  E,  and k,) determine only the scale of S-. The shape of S,, 
depends only on N/f .  Thus we computed S,, for different values of N/f in the 
range 10-100 to determine the depth dependence. For f = 7 x 10-5s-1 (at a 
latitude of 30") this covers N from 7 x 10-4 s-1 to 7 x s-l. As a typical main 
thermocline value we shall take N = 2-5 x lO-3s- l ,  i.e. N/f = 37.5. The para- 
meters E and k, then follow from (4.10) and (4.11) (cf. table 1). 

4.3. Characteristic features of the energy transfer 

We shall discuss the energy source function wSww rather than the action source 
function Sww. The graphical display is most conveniently done on a (a, P)-contour 
chart since here the cuts along constant a, /3 or w are simply straight lines. 

In  order to separate scale from shape effects we introduce dimensionless shape 
functions of the GM model spectrum by 

and the corresponding energy source function by 

I V  a J  

(4.14) 

(4.15) 

where a' = alk, and P ' = p / k *  

are scaled wavenumbers. Figures 2 (a )  and 2 (b )  are contour charts of the shape 
functions G and H for the GM 72 model with the Gaussian cut-off. Note that k, 
is the effective bandwidth in the P direction, whence the effective a bandwidth 
is about k, x f / N .  

Pronounced features of the energy transfer occur in the region P/k ,  < 3, 
Na/f k, < 3 and w < 10f. For higher wavenumbers and frequencies the source 
function decreases rapidly to zero. The reason is the high energy concentration a t  
low frequencies. Only about 10% of the total energy is found a t  frequencies 
w > 5f and wavenumbers /3 > 1*5k, or a > 16k, f / N .  Restricted by the resonance 
conditions, the transfer can be important only a t  values of a, /3 and w smaller than 
twice these limiting values. 

There is removal of energy from the frequency band 2f < w < 5f a t  inter- 
mediate wavenumbers. The energy is transferred to high wavenumbers at  low 
and high frequencies in a ratio of about 5: 1. This result is also apparent in the 
one-dimensional source functions, which are projections of wSww onto one- 
dimensional curves in k space. The shape function of the projection onto the 
vertical wavenumber is 

(4.16) 

25-2 
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FIUURE 2. Contour chart of ( a )  the dimensionless energy spectrum G(a‘,p’; N / f )  and 
( b )  the dimensionless energy source function H(a’, p’; N l f )  for GM 72; Nlf = 37.5. 
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FIGURE 3. (a) Dimensionless projections G,W; N l f )  of the energy spectrum and HI@'; N l f )  
of the energy source function for GM 72; N/f = 37.5. (b) Dimensionless projections 
Q2(w'; Nff)  of the energy spectrum for OM 72 and H,(w'; N f f )  of the energy source function 
for GM 72 and GM 75; Nlf = 37.6. 
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and onto the frequency is 

(4.17) 

where W' = WIN (4.18) 

is the scaled frequency. Figures 3 (a)  and (b)  show these shape functions together 
with the corresponding projections Cr,(B'; N / f )  and Gz(o'; N l f )  of the spectral 
shape function G(a', p'; N / f ) .  

The two-dimensional shape functions G and H for GM75 are shown in 
figures 4(a) and (b) .  The transfer within this spectrum is similar to that within 
the GM 72 spectrum. The lobes extend to slightly higher wavenumbers because 
the energy distribution of GM 76 decreases more slowly in wavenumber space 
than GM 72 (cf. figure 1 b). A minor difference occurs in the ratio of the transfer 
rates to low and high frequencies, which are nearly equal for GM 75. The pro- 
jection of the shape function onto frequency (figure 3 b)  and the projection onto 
vertical wavenumber (figure 5) are similar to those of GM 72 with the exception 
of Hl(,8'; N / f )  at low vertical wavenumbers: the positive transfer to low vertical 
wavenumbers at high frequencies is completely masked by the energy loss at  
lower frequencies. 

The transition from the scaled shape functions to real transfer rates follows 
from (4.14) and (4.15). Table 1 gives the scaling factors and values for the main 
thermocline. To get an impression of the importance of the energy transfer in the 
different spectral regions note that Ht/T* represents the amount the scaled 
spectrum G would change if the transfer rate remained constant at its initial value 
over a time t (this applies to the projections as well). Here T* = N/k: E is about 
3 x 103s for GM72 and 3-6 x 104s for GM 75 in the main thermocline. Thus, for 
example, 102H for GM 72, or 1OH for GM 75, is the amount G would change in 
3 days. 

The strength of the interaction may be characterized by integral transfer rates 

A& = N-IE2k2, da'dp'H(a',p';  N / f )  (4.19) S 
IS r 

and characteristic transfer times 

T = I E/A&l = Nkh2E-1 da'dp' H(a',  p'; N / f )  , (4.20) 

integrating over different spectral regions. In  the main thermocline we get 

(4.21) typically A& = em2 8-3 

and T = 10 days. (4.22) 

GM 72 generally yields slightly larger transfer rates than GM 75. 
As they are based on the GM model, the values apply to average conditions in 

the ocean. Nevertheless, we should regard them as estimates which may vary by 
an order of magnitude because of local variations of the spectrum. The transfer 
rate A 8  increases quadratically with the local energy density E and the local 
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FIGURE 4. Contour chart of (a) the dimensionless energy spectrum G(a’, p’; N l f )  and 
(b) the dimensionless energy source function H(u’, p’; N l f )  for GM 75; Nlf = 37.5. 
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FIGURE 5. Dimensionless projection G,(p’; N l f )  of the energy spectrum and dimensionless 
projection HI@‘; N l f )  of the energy source function for GM 75; Nlf = 37.5. 

Brunt-Viiislllll frequency 
Energy level 
Bandwidth 
Spectrum G(a’, p’; N l f )  

G1W;  Nlf) 
Gdw’; N l f )  

Source function H(a’, p’; N l f )  
H,(p’; N l f )  
qu’; N l f )  

Transfer rate, AE 
Time scale, T 

Main thermocline value 
Scaling r A > 

factor GM 72 GM 75 

2.5 x 10-3 
15.0 

2.3 x 10-4 
2.8 x l o8  
6.2 x 104 

9 x 104 

5.1 x 10-3 
2.9 x 103 

0.7 x 10-4 
3.1 x 109 
2.1 x 105 

9 x 104 

4.4 x 10-4 
3.4 x 104 

6 x  lo3 6 x lo3 

2.2 x 101 6.3 
2.1 1.8 x 10-l 

TABLE 1. Scaling factors, all values in cgs units. 

bandwidth k,. Local variations in E by a factor of 2 to 3 are frequently observed; 
similar variations can be expected for k, . 

The shape function H(a‘, p‘; N / f )  has been computed for different ratios N/f  
to obtain the depth dependence of the source function and related quantities. 
In  the interval 10 < N/f  < 100 the structure of H does not change significantly. 
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The level of H varies approximately as (N/’)-l. Hence the integral transfer rate 
(4.19) behaves with depth according to 

Al? N (Ek,/N)2 N N2,  (4.23) 

so that characteristic transfer time is proportional to the Brunt-Vaisala period: 

r N N2/Ek: N N-l. (4.24) 

Both relations indicate that nonlinear wave-wave interactions are most rapid in 
the main thermocline. Using (4.23) the transfer rate per unit surface area can be 
determined. For an exponential N-profile with an e-folding length of 1-3 km (cf. 
Garrett & Munk 1972) we get 

0 
A& = 1 dr, A 8  = 3 0111, s-,. 

-w 
(4.25) 

5. Implications for the energy balance 
Besides nonlinear interactions among the waves there are other processes 

which affect the state of the wave field. Internal waves can be excited and 
dissipated by various mechanisms (see the review by Thorpe 1975); even other 
energy-conserving transfer processes are possible. A survey of these processes, 
their theoretical treatment, and the form of the corresponding source terms in 
the radiation balance equation has recently been given by Muller & Olbers 
(1975). They point out that the efficiency of many interaction processes at 
generating, dissipating or transferring internal wave energy can hardly be 
estimated, partly because external fields involved in the interaction are not 
sufficiently well known (this applies for instance to atmospheric forcing), partly 
because the evaluation of the source term describing the interaction is cumber- 
some and needs numerical analysis (just as in most resonant interaction problems), 
and partly because reasonable models of the interaction process are missing (e.g. 
for strongly nonlinear processes). 

A few processes have been studied for oceanic conditions within a framework 
which is applicable to the energy balance of the deep-sea internal wave field. 
These are the WKBJ interaction of a quasi-geostrophic mean flow with the 
internal wave field (Muller 1974), the generation of lee waves by steady and 
tidal currents (Bell 1975), the scattering of internal waves by the fine-structure of 
the stratification (Mysak & Howe 1975), and the present study of wave-wave 
interactions within the internal wave field. 

Though we do not know the effect of each individual process affecting the wave 
field we know what they all do in concert on the average in the ocean: their sum 
maintains the internal wave climate represented by the universally observed 
frequency spectrum or, as afirst attempt a t  reconstructing the complete spectrum, 
the GM model. Thus, with the effect of the wave-wave interactions as a back- 
bone, we may look for the implications for other interaction processes which take 
part in the energy balance. 

In  order to explain a climatic state of the wave field we have to look for inter- 
action processes which are able to balance the sources and sinks in the spectrum 
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originating from the wave-wave interactions. Referring to figures 2 and 4, we 
expect an input of energy a t  low vertical and horizontal wavenumbers in the 
frequency band 2f < w < 5f, and dissipation of energy at high vertical wave- 
numbers and w 5 2f, and at high horizontal wavenumbers and w 2 5f. It is 
unlikely that this will be achieved by one process alone. A possible energy balance 
which approximately satisfies the above restrictions has been discussed by 
Muller & Olbers (1975) : the wave field is driven a t  low wavenumbers by a larger- 
scale mean flow, and the energy is dissipated after transfer to high wavenumbers 
by wave-wave interactions and subsequent wave breaking. 

5.  I. Inertial waves 

Let us fist consider the near-inertial frequency band. Both spectral models, 
GM 72 and GM 75, very efficiently produce near-inertial waves of high wave- 
number. The small inertial peak of the models represented by the cusp in (4.7) 
at w = f is not responsible for this feature. The energy is mainly taken from the 
continuum. This was tested by evaluating the source function for a frequency 
distribution function B(w) = flu2, for which the transfer to near-inertial waves 
is even slightly higher than for (4.7). 

The growth of the spectrum which is caused by the nonlinear transfer must of 
course be limited by a dissipation mechanism. The balance may be written in the 
simplified form 

where EI is the energy in the high wavenumber inertial band, and 7dg a charac- 
teristic dissipation time. The nonlinear transfer to the inertial band is the integral 
of wXww over this spectral region. As the energy comes from the continuum, we 
have approximated the transfer by E,/7, where Ec is the energy in the conti- 
nuum and 7 the characteristic transfer time (4.20). 

gI = - EI/7ds + EC/71 (5.1) 

In  a steady state the energy level in the inertial band is determined via 

E I  = (7ds/7) EC (5.2) 

through the dissipation time 7ds and the nonlinear transfer. An energy level EI 
much smaller than E,, as claimed by the GM model, would then imply 7d8 Q 7, 
i.e. very effective dissipation. 

Similar arguments may be applied to  inertial waves in the main region of the 
spectrum (i.e. p < k*). The tongue of the nonlinear transfer extends to this 
region at  least for GM 72 (see figure 2b). In  this case we need no direct generation 
process of inertial waves by external fields, e.g. the atmosphere, but instead we 
need a dissipation mechanism which destroys the energy input from the internal 
wave continuum due to wave-wave interactions. Since the energy in the inertial 
peak is comparable to or even larger than Ec the relation (5.2) implies 7ds 2 7. 

Generation of inertial waves out of the continuum by wave-wave interactions 
would explain the lack of coherence between deep-sea inertial waves and 
atmospheric fields (e.g. Pollard 1970). If generated by wave-wave interactions, 
modulations of inertial energy should correlate with modulations at higher 
frequencies. Correlations of this kind have been found by Frankignoul(l974). 
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FIGURE 6. Depth variation of the energy dissipation rate (after Okubo 1970). 0 ,  Stewart & 
Grant (1962); ., Grant et al. (1962); 'I, Takenouti et al. (1962); A, Grant et al. (1968); 
a, Woods (1968); A, Thorpe (1973); 0, our value. 

5.2. Dissipation by wave breaking 

Dissipation a t  high wavenumbers may be caused by wave breaking. This 
assumption has been made by Bretherton (1969) to explain clear-air turbulence 
as the result of a nonlinear cascade in the internal wave spectrum to high wave- 
numbers and subsequent breaking by Kelvin-Helmholtz instabiIity . 

There is direct and indirect evidence of wave breaking in the ocean. Deep-sea 
observations of temperature inversions and their evolution time have been 
reported by Cairns (1975). Pictures of the flow pattern in the Mediterranean 
summer thermocline showing internal wave breakers have been presented by 
Woods (1968). He found (see also Woods & Wiley 1972) that breaking occurs 
rather intermittently and produces discrete, small patches of weak turbulence 
which spread horizontally, forming layers of homogeneous water with lenses of 
weak turbulence. This layered structure (fine-structure) has been observed in 
temperature and saIinity profiles almost everywhere in the ocean (see the reviews 
of Monin 1973; Gregg 1975), giving indirect evidence of wave breaking. 

There are several mechanisms by which internal waves may break (Turner 
1973), some of which have been studied in laboratory experiments (0.g. McEwan 
1971, 1973; Thorpe 1973) and in numerical models (e.g. Orlanski & Ross 1973). 
In  the ocean, breaking by Kelvin-Helmholtz instability seems to be more likely 
than overturning (Garrett & Munk 19723). 

Independently of the detailed mechanism of the breaking process, part of the 
dissipated wave energy will be fed into small-scale turbulence which will be 
finally dissipated by molecular processes, and part of i t  will be used for mixing, 
thus eroding the mean density gradient. This balance may be written as 

A&hw = E f KVN2, (5-3) 
where Aghw is the nonlinear transfer to high wavenumbers, 6 is the viscous 
dissipation rate and K, is the vertical eddy diffusivity. The dissipation rate E and 
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the gain of mean potential energy K , N ~  are presumablyof the same order of 
magnitude. Thorpe (1973) suggests from tank experiments a ratio E / ( K , N ~ )  M 3, 
so that with Agh,  = cm2 s - ~  in the main thermocline we get 

K ,  = 0.3 cm2 s-l, 

E = 7.5 x 10-6 cm2s--3. 
(5.4) 

Neither quantity has been measured directly. Estimates depend strongly on the 
depth and the scale of the turbulent elements. Estimates for K, range from 
1 . 3 ~ m ~ s - ~  (Munk 1966) to 0-2cmZs-1 (Roether, Muennich & Ostlund 1970; 
Rooth & Ostlund 1972), the latter figure being obtained by fitting profiles of 
temperature and radioactive tracers to a balance of upwelling, diffusion and 
decay. An estimate of 0.3cm2s-l for small-scale vertical diffusion has been 
determined by Woods & Wiley (1972) from multisheet ensembles. Estimates of 
the dissipation rate e have been collected by Okubo (1970) for the upper 100m of 
the ocean. By extrapolation to greater depths Okubo expects an abyssal e of 
order 10-6 to cm2 s -~ .  This would be in good agreement with the balance 
(5.3) (see figure 6). Even the depth dependence of A&',, N N 2  is consistent with 
the rather narrow range of the estimates of K ,  and a decrease of E with depth. 

6. Conclusion 
Wave-wave interactions redistribute the energy of the wave field in wave- 

number-frequency space. We have shown that the interactions within the 
GM-model spectra lead to a transfer of energy from low wavenumbers and 
intermediate frequencies to high wavenumbers and low and high frequencies. 
The dependence of the transfer rate on the energy level and the wavenumber 
bandwidth was obtained by scaling; the dependence on the depth was studied 
numerically. It was found that the process is most important at  high values of the 
Brunt-Vaisalii frequency, and in particular that the characteristic time scale of 
the nonlinear transfer varies as the Brunt-Vaisala period. For typical conditions 
in the ocean the time scale is of the order of some days, indicating that wave- 
wave interactions play an important role in the energy balance of the internal 
wave spectrum. 

Wave-wave interactions conserve the energy and momentum of the wave 
field and therefore drop out of the overall energy budget, which is determined by 
generation and dissipation processes alone. However, if the nonlinear transfer is 
strong enough it may be crucial for the detailed energy balance, e.g. when 
generation and dissipation occur a t  different scales. Then the detailed form of the 
nonlinear transfer implies restrictions on the strength of generation and dissipa- 
tion processes in the different wavenumber and frequency bands. This concept 
seems to be appropriate if the effect of processes cannot be estimated directly, 
which is the case for most generation processes because the space-time structure 
of the generating fields is only insufficiently known. Moreover, the energy 
balance is perhaps the only way to gain some insight into the effectiveness of 
strongly nonlinear processes. 
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Assuming that the nonlinear transfer to high wavenumbers is balanced by 
wave breaking and then partly used for mixing, we have estimated the dissipa- 
tion rate of small-scale turbulence and a vertical mass diffusivity. The estimates 
agree well with earlier values obtained by different methods. As the nonlinear 
transfer feeds very efficiently the inertial band out of the internal wave continuum 
we suggest that the deep-sea inertial peak is to some extent generated by wave- 
wave interactions. The inertial energy level would then be determined by the 
nonlinear transfer rate and a dissipation time scale. 

Features of nonlinear interactions in the wave field and ideas about the energy 
balance can be principally tested against observations by bispectral analysis or 
study of the time variability of the interacting fields. Bispectra have been 
reported by Neshyba & Sobey (1975) and are computedfor the IWEX data (M. G. 
Briscoe, personal communication). Comparing the duration of IWEX with the 
characteristic time scales of the interaction processes, the investigation of 
time variability with these data seems to be marginally fruitful. 
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